foto Adı Soyadı : Prof.Dr. Kamil DEMİRCİ Tel-Dahili : 271 55 16-4219
Bölüm : Fen Edebiyat Fakültesi  Cep Telefonu :  
Görevi :   Faks :
Anabilim Dalı : MATEMATİK ANABİLİM DALI ePosta : kamild mail
Oda No :
web sitesi :
   
 
YABANCI DİL

İngilizce

 
ÖĞRENİM BİLGİLERİ

Doktora 1992-1998
ANKARA ÜNİVERSİTESİ FEN FAKÜLTESİ/MATEMATİK BÖLÜMÜ
Tez adı: A-İstatistiksel yakınsaklık ve çarpan uzayları  (1998)

Yüksek Lisans-Tezli 1989-1992
ANKARA ÜNİVERSİTESİ FEN FAKÜLTESİ/MATEMATİK BÖLÜMÜ
Tez adı: İstatiksel yakınsaklık  (1992)

Lisans-Anadal 1984-1989
ANKARA ÜNİVERSİTESİ FEN FAKÜLTESİ/MATEMATİK BÖLÜMÜ

AKADEMİK ÜNVANLAR

PROFESÖR 2011-...
SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK ANABİLİM DALI

DOÇENT 2006-2011
SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK ANABİLİM DALI

YARDIMCI DOÇENT DOKTOR 2003-2006

ONDOKUZ MAYIS ÜNİVERSİTESİ/SİNOP FEN EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK ANABİLİM DALI

YARDIMCI DOÇENT DOKTOR 1998-2003

KIRIKKALE ÜNİVERSİTESİ

İDARİ GÖREVLER

Rektör Yardımcısı 2011-2014

Fen-Edebiyat Fakültesi Dekanı 2012-2015; 2015-...

Matematik Bölüm Başkanı 2014-...

Matematik Bölüm Başkanı 2003-2006

Fen-Edebiyat Fakültesi Yönetim Kurulu Bölüm Başkanı Üye 2014-...

Fen-Edebiyat Fakültesi Yönetim Kurulu Üyesi 2003-…

Fen-Edebiyat Fakültesi Kurulu Üyesi 2003-…

Eğitim Fakültesi Yönetim Kurulu Üyesi 2006-2007; 2011-...

DERSLER

REEL ANALİZ I 

ANALİZ I-II-III-IV

FONKSİYONEL ANALİZ I-II 

REEL ANALIZ 

ÖLÇÜM TEORİSİ

TOPOLOJİK VEKTÖR UZAYLARI 

ANALİZDEN SEÇME KONULAR I-II

VEKTÖREL ANALİZ

MATEMATİK I-II

MESLEKİ MATEMATİK

 

ÜAK TEMEL ALAN

Temel Alan    :    Fen Bilimleri ve Matematik Temel Alanı
Bilim Alanı    :    Matematik
Anahtar Kelime 1 : Matematiksel Analiz

YÖNETİLEN TEZLER

Doktora
1.     KARAKUŞ SEVDA, (2009). Pozitif lineer operatörlerin eş-istatistiksel yakınsaklığı ve Korovkin tipi teoremler, Ondokuz Mayıs Üniversitesİ
2.     DİRİK FADİME, (2010). Bögel sürekli fonksiyonlar için A-istatistiksel yaklaşım, Ondokuz Mayıs Üniversitesi
3.     ORHAN SEVDA, (2017). Modüler uzaylarda istatistiksel A-toplam süreci ve Korovkin teoremi, Sinop Üniversitesi
4.     KOLAY BURÇAK, (Devam ediyor). Modüler uzaylarda istatistiksel relative yakınsaklık ve Korovkin tipi teoremler, Sinop Üniversitesi

Yüksek Lisans
5.     OLGUN MURAT, (2004). I-yakınsaklık, Kırıkkale Üniversitesi
6.     GEZER FADİME, (2005). İstatistiksel yakınsak fonksiyon dizileri, Ondokuz Mayıs Üniversitesi
7.     ÇEVİK NİGAR, (2006). A-istatistiksel yakınsaklık, Ondokuz Mayıs Üniversitesi
8.     ERGÜN EVREN, (2006). I-çekirdek, Ondokuz Mayıs Üniversitesi
9.     ORHAN SEVDA, (2011). İstatistiksel Korovkin tipi yaklaşım teoremleri, Sinop Üniversitesi
10.   CEYLAN TAHİR, (2012). Modüler uzaylarda Korovkin tipi yaklaşım teoremi ve matris toplanabilme, Sinop Üniversitesi
11.   YALÇIN SELİN, (Devam ediyor). Modüler uzaylarda istatistiksel relatively Korovkin tipi yaklaşım teoremleri , Sinop Üniversitesi

 

ESERLER

Uluslararası hakemli dergilerde yayımlanan makaleler : (SSCI,SCI,SCI-EXPANDED,AHCI):

1.DEMİRCİ KAMİL (1996). Strong A-summability and A-statistical convergence. Indian Journal of Pure and Applied Mathematic(27), 589-593.

2.DEMİRCİ KAMİL (1998). A criteria for A-statistical convergence. Indian Journal of Pure and Applied Mathematic(29), 559-564.

3.DEMİRCİ KAMİL and ORHAN C (1999). Bounded multipliers of bounded A-statistically convergent sequences.Journal of Mathematical Analysis and Applications(235), 122-129.

4.DEMİRCİ K, KHAN M K ve ORHAN C (2003). Strong and A-statistical comparasions for sequences. J. Math. Anal. App.(278), 27-33.

5.DEMİRCİ K, KHAN M K ve ORHAN C (2003). Subspaces of A-statistically convergent sequences. Studia Sci. Math. Hungarica(40),183- 190.

6.DEMİRCİ KAMİL ve YARDIMCI ŞEYHMUS (2004). -core and I-core of bounded sequences. J. Math. Anal. Appl.(290), 414-422.

7.KARAKUŞ SEVDA and DEMİRCİ KAMİL (2008). Statistical convergence of Double Sequences on intuitionistic fuzyy normed spaces. Journal of Computational Analysis and Application(10), 377-389.

8.DİRİK F, ARAL A and DEMİRCİ K (2008). I-Convergence of positive linear operators on L(p) weighted spaces. Journal of Computational Analysis and Application(10), 75-81.

9.KARAKUŞ SEVDA, DEMİRCİ KAMİL and DUMAN OKTAY (2008). Statistical convergence on intuitionistic fuzzy normed spaces. Chaos Solitons and Fractals(35), 763-769.

10.KARAKUŞ SEVDA, DEMİRCİ KAMİL and DUMAN OKTAY (2008). Equi-statistical convergence of positive linear operators. J.Math.Anal.Appl.(339), 1065- 1072.

11.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2009). Equi-Statistical Extension of the Korovkin Type Approximation Theorem. J.Turkish. Math.(33), 159- 168.

12.DİRİK FADİME and DEMİRCİ KAMİL (2009). Korovkin Type Approximation Theorems in B-Statistical Sense. Mathematical and Computer Modelling(49), 2037- 2044.

13.DİRİK FADİME, DUMAN OKTAY and DEMİRCİ KAMİL (2009). Statistical Approximation to Bögel-type Continuous and Periodic Functions. Cent. Eur. J. Math.(7), 539- 549.

14.DİRİK FADİME and DEMİRCİ KAMİL (2010). Korovkin Type Approximation Theorem for Functions of Two Variables in Statistical Sense. J.Turkish. Math.(4), 73-83.

15.DİRİK FADİME and DEMİRCİ KAMİL (2010). Four-Dimensional Matrix Transformation and Rate of A-statistical Convergence of continuous Functions. Computers and Mathematics with Applications(59), 2976 -2981.

16.DİRİK FADİME and DEMİRCİ KAMİL (2010). Modified Double Szász-Mirakjan Operators Preserving x²+y². Mat. Commun.(15), 177 -188.

17.KARAKUŞ SEVDA, DEMİRCİ KAMİL and DUMAN OKTAY (2010). Statistical Approximation by Positive Linear Operators on Modular Spaces. Positivity(14), 321-334.

18.DEMİRCİ KAMİL and DİRİK FADİME (2010). A Korovkin type approximation theorem for double sequences of positive linear operators of two variables in A-statistical sense. Bull. Korean Math. Soc.(47), 825–837.

19.DİRİK FADİME, DUMAN OKTAY and DEMİRCİ KAMİL (2010). Approximation in Statistical Sense to B-Continuous Functions by Positive Linear Operators. Studia Sci. Math. Hungarica(3), 289-298.

20.DİRİK FADİME and DEMİRCİ KAMİL (2010). Approximation in Statistical Sense to n-variate B-Continuous Functions by Positive Linear Operators. Math. Slovaca(60), 877-886.

21.DİRİK FADİME and DEMİRCİ KAMİL (2010). B-Statistical Approximation for Periodic Functions. Studia Sci. Math. Hungarica(47)(3), 321-332.

22.DEMİRCİ KAMİL and DİRİK FADİME (2010). Four -Dimensional Matrix Transformation and Rate of A-Statistical Convergence of Periodic Functions. Mathematical and Computer Modelling(52), 1858-1866.

23.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2010). Equi-Statistical σ-Convergence of Positive Linear Operators. Computers and Mathematics with Applications(60), 2212-2218.

24.DEMİRCİ KAMİL and DİRİK FADİME (2011). Approximation for periodic functions via statistical sigma-convergence. Mathematical Communications(16), 77-84.

25.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2011). Statistical Sigma Approximation To Bögel Continuous Functions. Studia Sci. Math. Hungarica(48), 475-488.

26.DEMİRCİ KAMİL and KARAKUŞ SEVDA (2011). Statistical A-summability of positive linear operators. Mathematical and Computer Modelling(53), 189-195.

27.DİRİK FADİME and DEMİRCİ KAMİL (2011). Equi-ideal Convergence of Positive Linear Operators for Analytic P-Ideals. Mathematical Communications(16), 169-178.

28.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2011). Statistical -approximation to max-product operators. Computers and Mathematics with Applications(61), 1024-1031.

29.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2011). Summation process of Korovkin type approximation theorem. Miskolc Mathematical Notes(12), 75-85.

30.DEMİRCİ KAMİL and DİRİK FADİME (2011). Statistical σ-convergence of positive linear operators. Applied Mathematics Letters(24), 375-380.

31.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2012). A-Summation Process and Korovkin-Type Approximation Theorem For Double Sequences of Positive Linear operators. Math. Slovaca(62), 281-292.

32.DEMİRCİ KAMİL and KARAKUŞ SEVDA (2013). Korovkin Type Approximation Theorem For Double Sequences of Positive Linear Operators Via Statistical A-summability. Results in Mathematics(63), 1-13.

33.ORHAN SEVDA, DİRİK FADİME and DEMİRCİ KAMİL (2014). A Korovkin-type Approximation theorem for double sequences of positive linear operators of two variables in statistical A-summability sense. Miskolc Mathematical Notes(15), 625–633.

34.ORHAN SEVDA, DEMİRCİ KAMİL (2014). Statistical A-summation process and Korovkin type approximation theorem on modular spaces. Positivity(18), 669-686.

35.ORHAN SEVDA, DEMİRCİ KAMİL (2015). Statistical approximation by double sequences of positive linear operators on modular spaces. Positivity(19), 23-36.

36.BARDARO CARLO, BOCCUTO ANTONIO, DEMİRCİ KAMİL, MANTELLINI ILARIA and ORHAN SEVDA (2015). Triangular A-Statistical Approximation by Double Sequences of Positive Linear Operators. Results in Mathematics(68), 271–291.

37.BARDARO CARLO, BOCCUTO ANTONIO, DEMİRCİ KAMİL, MANTELLINI ILARIA and ORHAN SEVDA (2015). Korovkin-Type Theorems for Modular -A-Statistical Convergence. Journal of Function Spaces(2015), Article ID 160401, 11 pages.

38. DEMİRCİ KAMİL, ORHAN SEVDA (2016). Statistically Relatively Uniform Convergence of Positive Linear Operators. Results in Mathematics(69), 359–367.

39. YILMAZ BURÇAK, DEMİRCİ KAMİL, ORHAN SEVDA (2016). Relative Modular Convergence of Positive Linear Operators. Positivity(20), 565–577.

40. DEMİRCİ KAMİL, ORHAN SEVDA (2017). Statistical Relative Approximation on Modular Spaces. Results in Mathematics(71), 1167-1184.

41. DEMİRCİ KAMİL, KOLAY BURÇAK (2017). A-Statistical Relative Modular Convergence of Positive Linear Operators. Positivity(21), 847-863.

42. KOLAY BURÇAK, ORHAN SEVDA, DEMİRCİ KAMİL (...). Statistical Relative A-Summation Process and Korovkin-Type Approximation Theorem on Modular Spaces. Iran J Sci Technol Trans Sci, DOI 10.1007/s40995-016-0137-1.

43. DEMİRCİ KAMİL, ORHAN SEVDA, KOLAY BURÇAK (...). Statistical Relative A-Summation Process for Double Sequences on Modular Spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, DOI 10.1007/s13398-017-0418-3.

44. ORHAN SEVDA, DEMİRCİ KAMİL (...). K_a-convergence and Korovkin type approximation. Periodica Mathematica Hungarica. DOI 10.1007/s10998-017-0225-9.

SSCI,SCI,SCI-EXPANDED,AHCI kapsamı dışındaki Uluslararası hakemli dergilerde yayımlanan makaleler:

1.DEMİRCİ KAMİL (2000). A-statistical core of a sequence. Demonstratio Mathematica(33), 343-353.

2.DEMİRCİ KAMİL (2001). I-limit superior and inferior. Mathematical Communications(6), 165-172.

3.DEMİRCİ KAMİL (2002). On A-statistical cluster points. Glasnik Matematicki(37), 293-301.

4.CONNOR J, DEMİRCİ K, ORHAN C (2002). Multipliers and factorizations for bounded statistically convergent sequences. Analysis(22), 321-333.

5.DEMİRCİ KAMİL (2002). On lacunary statistical limit points. Demonstratio Mathematica(35), 93-101.

6.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2007). Statistical convergence of double sequences on probabilistic normed spaces. International Journal of Mathematics and Mathematical Sciences(14737), 1-11.

7.KARAKUŞ S, DEMİRCİ K, YARDIMCI Ş (2008). Statistical limit points of sequences on intuitionistic fuzzy normed spaces. Journal of Concrete and Applicable Mathematics(6), 375-386.

8.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2010). Matrix Summability and Korovkin Type Approximation Theorem on Modular Spaces. Acta Mathematica Universitatis Comenıanae(2), 281-292.

9.DİRİK FADİME, DEMİRCİ KAMİL (2011). Szasz-Mirakjan Type Operators of Two Variables Providing A Beter Estimation on [0; 1] x [0; 1]. Matematicki Vesnik(63), 59-66.

10.DEMİRCİ KAMİL, DİRİK FADİME (2011). Statistical σ-extension of the Korovkin-type approximation theorem. Applied Mathematics E-Notes(11), 101-109.

11.ANASTASSIOU G, DEMİRCİ K, KARAKUŞ S (2011). A-summability and Fuzzy Korovkin-type Approximation. Journal of Fuzzy Mathematics(19), 443-452.

12.DİRİK FADİME, DEMİRCİ KAMİL (2011). Four-Dimensional Matrix Transformation and Rate of A-Statistical Convergence of Bögel-Type Continuous Functions. Studia Universitatis Babeş-Bolyai Mathematica(56), 95-104.

13.ANASTASSIOU G, DEMİRCİ K, KARAKUŞ S (2011). A-summability and Fuzzy Trigonometric Korovkin-type Approximation. Journal of Fuzzy Mathematics(19), 453-462.

14.KARAKUŞ SEVDA, DEMİRCİ KAMİL (2012). Approximation For Periodic Functions Via Statistical A-Summability. Acta Mathematica Universitatis Comenianae(81), 159-169.

15.DEMİRCİ KAMİL, KARAKUŞ SEVDA (2012). Approximation in statistical sense by n-multiple sequences of fuzzy positive linear operators. Studia Universitatis Babeş-Bolyai Mathematica(57), 387-394.

16.DEMİRCİ KAMİL, KARAKUŞ SEVDA (2012). A-Statistical Korovkin-Type Approximationtheorem For Functions Of Two Variables On An İnfinitte İnterval. Acta Mathematica Universitatis Comenianae(81), 151-157.

17.DEMİRCİ KAMİL, KARAKUŞ SEVDA (2013). Four -Dimensional Matrix Transformation and A-Statistical Fuzzy Korovkin Type Approximation. Demonstratio Mathematica(46), 37-49.

18.DEMİRCİ KAMİL, DİRİK FADİME (2013). A Korovkin-type approximation theorem in statistical sense to B-Continuous Functions. General Mathematics, 2(21), 93-111.

19.ORHAN SEVDA, DİRİK FADİME, DEMİRCİ KAMİL (2014). Statistical convergence on probabilistic modular space. Studia Universitatis Babeş-Bolyai Mathematica, 3(59), 317-329.

20.DİRİK FADİME, DEMİRCİ KAMİL (2015). Statistical Korovkin-Type Theory for Matrix-Valued Functions of Two Variables. Applied Mathematics E-Notes, 15, 327-341.

21. DEMİRCİ KAMİL, ORHAN SEVDA, KOLAY BURÇAK (2016). Relative Almost Convergence and Approximation Theorems. Sinop University Journal of Natural Sciences 1 (2), 114-122.

22. ORHAN SEVDA, KOLAY BURÇAK and DEMİRCİ KAMİL (2017). Statistically Relatively Approximations by Fuzzy Positive Linear Operators. The Journal of Fuzzy Mathematics, 25 (3), 713-722.

Uluslararası bilimsel toplantılarda sunulan ve bildiri kitabında (Proceedings) basılan bildiriler:

1.DEMİRCİ KAMİL (2016). A-Statistical Relative Approximation of Positive Linear Operators on Modular Spaces. [International Workshop on Operator Theory and Operator Algebras (WOAT 2016)]

2.ORHAN SEVDA, DEMİRCİ KAMİL (2017). K_a-convergence and Korovkin Type Approximation. [International Conference on Mathematics and Engineering (ICOME 2017)]

3.ORHAN SEVDA, DEMİRCİ KAMİL (2017). Abstract Korovkin Theorems via Relative Modular Convergence for Double Sequences. [International Conference on Mathematics and Engineering (ICOME 2017)]

Yayın Hakemliği:

Indian Journal of Pure and Applied Mathematics

Mathematica Slovaca

Iranian Journal of Fuzzy Systems

Mathematical Communications

Studia Scientiarum Mathematicarum Hungarica

Acta Mathematice Applicatae Snica

Abstract and Applied Analysis

Turkish Journal of Mathematics

Acta Mathematica Scientia

Glasnik Matematicki

Demonstratio Mathematica

American Mathematical Society

Abstract and Applied Analysis

Studia Univ.”Babeş-Bolyai”, Mathematica

International Journal of Mathematics and Mathematical Sciences

APPLIED MATHEMATICS AND INFORMATION SCIENCES

ALLAHABAD MATHEMATICAL SOCIETY

Information Sciences

Applied Mathematics and Computation

Mathematical and Computer Modelling

Applied Mathematics Letter

Acta Mathematice Applicatae Snica

Journal of Mathematical Analysis & Application

BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY

Computers & Mathematics with Applications

BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY

PROJELER

Yürütücü
2017 BAP: Modüler uzaylarda tanımlı pozitif lineer operatörlerin dizileri yardımıyla Korovkin tipi yaklaşım teoremleri ve istatistiksel relatively A-toplam süreci, Sinop Üniversitesi(devam ediyor).

Araştırmacı

2017 BAP: Nötral gecikmeli fonksiyonel fark denklemleri ve kararlılık teorisi üzerine, Sinop Üniversitesi(devam ediyor).

ÜYELİKLER

Üye
American Mathematical Society, 2010

ÖDÜLLER

Tübitak Yayın Teşvik Ödülleri

DİĞER HUSUSLAR